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• Theorem 2 (Alon, Hoory and Linial). Let G be an n-vertex graph with average
degree d, where all degrees are at least 2. Then G has at least nd(d − 1)k−1 non-
backtracking walks of length k, with equality if and only if G is regular and d is an
integer.

Proof. Let A be nd× nd matrix indexed by directed edges.

(A) ~uv, ~wz =

{
1, u=v and z=w

0, otherwise

Let P be nd× nd matrix.

(P ) ~uv, ~wz =

{
1

α−1
, u=v and z=w

0, otherwise

Then the matrix P is the transition matrix of a random walk. Let ~x = 1
nd
~I, then ~xP = ~x.

And let Ne = |Ωe|. Let

N =
∑

(~xe)Ne =< ~xAk−1,~1 > (1)

be the number of non-backtracking k-walks in G times 1
nd

.

For walk w = e = e1, e2, ..., ek ∈ Ωe and f ∈ e1, e2, ..., ek−1, denote nf (w) to be the
number of times that f appears in w. Let p(~w) be the probability of the walk ~w, i.e.
p(~w) =

∏
~uv(dv − 1)−n ~uv(w)(2). By the inequality of arithmetic-geometric means, we

rewrite (1) as

N =
∑
e

(~x)eNe =
∑

(~xk)
∑ p(w)

p(uv)
≥
∏
e

∏
w∈Ωe

1

p(w)

=
∏
e

∏
w∈Ωe

∏
~uv

(dv − 1)−n ~uv(w) = −
∏
~uv

(dv − 1)
∑

e(~x)e
∑

w∈Ωe
n ~uv(w)p(w)

And we let the exponent of the upper result to be E∗~uv, which is the expected number
of visits to the edge ~uv in a backtracking random walk of length k (starting with the
initial distribution ~x). So

N ≥
∏
~uv

(dv − 1)E
∗
~uv =

∏
~uv

(dv − 1)
∑k−1

i=1 (~xpi) ~uv
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where (~xpi) ~uv equals the expected number of times that ~uv appears in the ith edge of
the random walk. Note that ~xp = ~x. So this implies that

N ≥
∏
~uv

(dv − 1)
∑k−1

i=1
1
nd =

∏
~uv

(dv − 1)
k−1
nd =

[∏
v

(dv − 1)
dv
nd

](k−1)

= ∆k−1

where ∆ =
∏

v(dv − 1)
dv
nd . Let f(x) = (x− 1)x. Then (log f(x))′′ ≥ 0 for x ≥ 2. So f(x)

is log-concave, thus

log ∆ =
∑
v

dv
nd

log(dv−1) =
1

d
·
(∑

v dv log(dv − 1)

n

)
≥ 1

d
·
∑

dv
n

log

(∑
dv
n
− 1

)
= log(d−1).

Then N ≥ (d− 1)k−1. This proves the theorem.

Moore Bound

• Defination: The girth of a graph G is the length of the shortest circle.

• Defination: Let n0(d, g) be a function such that

n0(d, g) =

{
1 + d

∑r−1
i=0 (d− 1)i, if g = 2r + 1

2
∑r−1

i=0 (d− 1)i, if g = 2r

This function is called Moore Bound.

• Fact: Let G be an n-vertex d-regular graph with graph g, then n ≥ n0(d, g).

• This proof is done by sketch.

• Theorem 3. Let G be an n-vertex graph with girth g and average degree d ≥ 2, then
n ≥ n0(d, g).

Proof. We first claim that we may assume G has no vertices of degree 0 or 1.

Suppose there exist v, s.t.dv ≤ 1. Let G′ = G − v, so G′ has n − 1 vertices and girth
more than g. And the average degree of G′

d′ ≥ nd− 2

n− 1
(as d ≥ 2)

By induction on |v(G′)|, we have n− 1 ≥ n0(d′, g′) ≥ n0(d, g). This proves the Claim.

Thus, all vertex degrees are greater than 2, and then we can apply Theorem 2.
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For g = 2r+1, Theorem 2 shows that G has more than nd(d−1)i−1 non-backtracking i-
walks for all i ∈ {1, 2, ..., r}. By averaging, there exists a vertex v which is the beginning
vertex of at least

r∑
i=1

nd(d− 1)i−1

n
=

r∑
i=1

d(d− 1)i−1

non-backtracking walks of length less than r in G. Since g(G) ≥ 2r + 1 all such walks
should have distinct end-points (other than v). So n − 1 ≥

∑r
i=1 d(d − 1)i−1. Thus

n ≥ 1 +
∑r

i=1 d(d− 1)r−1 = n0(d, 2r + 1)

For g = 2r, by Theorem 2, G has more than nd(d − 1)i−1 i-walks for i ∈ {1, 2, ..., r}.
Note that nd = 2e. By averaging, there exists uv ∈ E(G), which is the beginning edge
(u→ v → ... and v → u→ ...) of at least

r∑
i=1

nd(d− 1)i−1

e
= 2

r∑
i=1

(d− 1)r−1

non-backtracking walks of length less than r. Observe that all such walks should have
distinct end-points. Thus n ≥ 2

∑r
i=1(d− 1)i−1 = n0(d, 2r). This proves Theorem 3.

• Defination: A graph with girth g and average degree d achieving the Moore Bound is
called a Moore graph.

The existence of d-regular Moore graphs (for d ≥ 3,g ≥ 5) attracts many attentions.

• Theorem 4 (Hoffman-Singleton). If a d-regular Moore graph of girth exists then
d ∈ {2, 3, 7, 57}.
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