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e Theorem 2 (Alon, Hoory and Linial). Let G be an n-vertex graph with average
degree d, where all degrees are at least 2. Then G has at least nd(d — 1)*~! non-
backtracking walks of length k, with equality if and only if G is regular and d is an
integer.

Proof. Let A be nd x nd matrix indexed by directed edges.

1, u=v and z=w

(A)uﬂ, 0z — .
0, otherwise

Let P be nd x nd matrix.

B ﬁ, u=v and z=w
0, otherwise

Then the matrix P is the transition matrix of a random walk. Let # = %f, then 7P = 7.

And let N, = |Q,|. Let

N => (Z)N, =< zA"" 1> (1)

be the number of non-backtracking k-walks in G times %.

For walk w = e =-ej,ey,...,e; € . and f € ey, e9,...,e,_1, denote ny(w) to be the
number of times that f appears in w. Let p(w) be the probability of the walk ), i.e.
p(wW) = [[;(dy, — 1)7™®w (2). By the inequality of arithmetic-geometric means, we
rewrite (1) as

N = Z(x)eNe = Z(xk) Z ]f((uv)) = H ll p(w)

= H H H(d” — 1)_711&}(10) = — H(dv _ 1)26(5)6 > wea, b (w)P(w)
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And we let the exponent of the upper result to be E, . which is the expected number
of visits to the edge ud in a backtracking random walk of length k (starting with the
initial distribution &). So

N > T](d — )% = J](d, — )= @

—
uv



where (Zp')s equals the expected number of times that b appears in the i'" edge of
the random walk. Note that p = Z. So this implies that

(k—1)
N = [, - == =[], - )% = [H(dv - 1>i”d] =AM

UD uY v

d

where A =[] (d, — 1)na. Let f(z) = (x —1)*. Then (log f(z))"” > 0 for > 2. So f(x)

is log-concave, thus

d, 1 (Y, dylog(d, — 1 154, d,
log A= —log(do—1) = E(Z n( )) > E'Zn log (Zn - 1) = log(d—1).

Then N > (d — 1)*71. This proves the theorem.
Moore Bound

Defination: The girth of a graph G is the length of the shortest circle.
Defination: Let ny(d, g) be a function such that
r—1 P
e~ LR L
This function is called Moore Bound.
Fact: Let G be an n-vertex d-regular graph with graph g, then n > ny(d, g).
This proof is done by sketch.

Theorem 3. Let G be an n-vertex graph with girth g and average degree d > 2, then
n Z n0<d7 g)
Proof. We first claim that we may assume G has no vertices of degree 0 or 1.
Suppose there exist v,s.t.d, < 1. Let G' = G — v, so G' has n — 1 vertices and girth
more than g. And the average degree of G’

nd — 2

d >
“n-—1

(as d>2)

By induction on |v(G")|, we have n — 1 > no(d’, g’') > no(d, g). This proves the Claim.

Thus, all vertex degrees are greater than 2, and then we can apply Theorem 2.



For g = 2r +1, Theorem 2 shows that G has more than nd(d —1)"~! non-backtracking i-
walks for all 7 € {1,2,...,r}. By averaging, there exists a vertex v which is the beginning

vertex of at least
d(d
yo e Z d(d - 1)
i=1
non-backtracking walks of length less than r in G. Since g(G) > 2r + 1 all such walks
should have distinct end-points (other than v). Son —1 > >0 d(d — 1), Thus
n>1+>" dd—1)""=mng(d,2r+1)

For g = 2r, by Theorem 2, G has more than nd(d — 1)"~! i-walks for i € {1,2,...,7}.
Note that nd = 2e. By averaging, there exists uv € E(G), which is the beginning edge
(u—v—..and v — u — ...) of at least

an( —QZ _y

i=1
non-backtracking walks of length less than r. Observe that all such walks should have
distinct end-points. Thus n > 237 (d — 1)"' = ng(d, 2r). This proves Theorem 3.
Defination: A graph with girth g and average degree d achieving the Moore Bound is
called a Moore graph.
The existence of d-regular Moore graphs (for d > 3,g > 5) attracts many attentions.

Theorem 4 (Hoffman-Singleton). If a d-regular Moore graph of girth exists then
de{2,3,7,57).



